Search results for "ODORANT-BINDING PROTEIN"
showing 10 items of 19 documents
The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae
2021
Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1–C6, C2–C3, C4–C5) differing from that of insect counterparts (C1–C3, C2–C5, C4–C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destruc…
The 40-Year Mystery of Insect Odorant-Binding Proteins
2021
International audience; The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted “transporter role”, OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthpar…
Interaction between odorants and proteins involved in the perception of smell: the case of odorant-binding proteins probed by molecular modelling and…
2012
A joint approach that combines molecular modelling and fluorescence spectroscopy is used to study the affinity of an odorant binding protein towards various odorant molecules. We focus on the capability of molecular modelling to rank odorants according to their affinity with this protein, which is involved in the sense of smell. Although ligand-based approaches are unable to propose an accurate model attending to the strength of the bond with the odorant-binding protein, receptor-based structures considering either static or dynamic structure of the protein perform equally to discriminate between good, medium and low affinity odorants. Such approaches will be useful for further rational des…
Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus
2005
International audience
Structure of rat odorant-binding protein OBP1 at 1.6 angstrom resolution
2009
The nasal mucosa is a specialist interfacial region sandwiched between the olfactory system and the gaseous chemical milieu. In mammals and insects, this region is rich in odorant-binding proteins that are thought to aid olfaction by assisting mass transfer of the many different organoleptic compounds that make up the olfactory landscape. However, in mammals at least, our grasp on the exact function of odorant-binding proteins is tentative and better insight into the role of these proteins is warranted, not least because of their apparent significance in the olfactory systems of insects. Here, the crystal structure of rat odorant-binding protein 1 is reported at 1.6 Å resolution. This prote…
Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains.
2012
Susceptibility of Tribolium castaneum (Tc) larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50) values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively). Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major cat…
Enthalpy/entropy compensation effects from cavity desolvation underpin broad ligand binding selectivity for rat odorant binding protein 3
2014
Evolution has produced proteins with exquisite ligand binding specificity, and manipulating this effect has been the basis for much of modern rational drug design. However, there are general classes of proteins with broader ligand selectivity linked to function, the origin of which is poorly understood. The odorant binding proteins (OBPs) sequester volatile molecules for transportation to the olfactory receptors. Rat OBP3, which we characterize by X-ray crystallography and NMR, binds a homologous series of aliphatic gamma-lactones within its aromatic-rich hydrophobic pocket with remarkably little variation in affinity but extensive enthalpy/entropy compensation effects. We show that the bin…
Identification of a lysyl residue defining the binding specificity of a human odorant-binding protein
2008
International audience
When the nose must remain responsive: glutathione conjugation of the mammary pheromone in the newborn rabbit
2014
In insects, xenobiotic-metabolizing enzymes were demonstrated to regulate pheromones inactivation, clearing them from the olfactory periphery and keeping receptors ready for stimulation renewal. Here, we investigate whether similar processes could occur in mammals, focusing on the pheromonal communication between female rabbits and their newborns. Lactating rabbits emit in their milk a volatile aldehyde, 2-methylbut-2-enal, that elicits searching-grasping in neonates; called the mammary pheromone (MP), it is critical for pups which are constrained to find nipples within the 5 min of daily nursing. For newborns, it is thus essential to remain sensitive to this odorant during the whole nursin…
A new odorant-binding protein XlaeOBP identified in the aerial olfactory system of Xenopus laevis and Xenopus tropicalis
2004
National audience