Search results for "ODORANT-BINDING PROTEIN"

showing 10 items of 19 documents

The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae

2021

Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1–C6, C2–C3, C4–C5) differing from that of insect counterparts (C1–C3, C2–C5, C4–C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destruc…

0106 biological sciences0301 basic medicineModels MolecularProteomicsProteomeOdorant bindingProtein ConformationInsectLigandsReceptors Odorant01 natural scienceschemistry.chemical_compoundTetranychus urticaeBiology (General)SpectroscopyPhylogenymedia_commonmass spectrometryGeneticsbiologyligand-bindingMolecular Structurespider mitesGeneral MedicineTetranychus urticaeComputer Science ApplicationsChemistryConiferyl aldehydedisulfide bridgesTetranychidaeProtein Bindingspider mites.QH301-705.5media_common.quotation_subjectodorant-binding proteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesSpider mite<i>Tetranychus urticae</i>AnimalsAmino Acid SequencePhysical and Theoretical ChemistryQD1-999Molecular BiologySpiderOrganic Chemistrybiology.organism_classification010602 entomology030104 developmental biologychemistryVarroa destructorOdorantsChelicerataInternational Journal of Molecular Sciences
researchProduct

The 40-Year Mystery of Insect Odorant-Binding Proteins

2021

International audience; The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted “transporter role”, OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthpar…

0301 basic medicineInsectaChemoreceptorOdorant bindinglcsh:QR1-502Gene ExpressionReviewInsectReceptors OdorantBiochemistryPheromoneslcsh:MicrobiologytasteSexual Behavior Animal0302 clinical medicinemedia_commonbiologyRihanichemosensory functionsArthropod mouthparts3. Good healthCell biologyDrosophila melanogasterodorant-protein-binding assayInsect ProteinsPheromoneDrosophila melanogasterolfactionmedia_common.quotation_subjectK.OlfactionFerveurEvolution Molecularnon-chemosensory functions03 medical and health sciencesAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyL. The 40-Year Mystery of Insect Odorant-Binding Proteins insectMolecular BiologyJ.-F.fungiBriandTransporterbiology.organism_classificationodorantprotein-binding assayHematopoiesis030104 developmental biologyinsect[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryBiomolecules
researchProduct

Interaction between odorants and proteins involved in the perception of smell: the case of odorant-binding proteins probed by molecular modelling and…

2012

A joint approach that combines molecular modelling and fluorescence spectroscopy is used to study the affinity of an odorant binding protein towards various odorant molecules. We focus on the capability of molecular modelling to rank odorants according to their affinity with this protein, which is involved in the sense of smell. Although ligand-based approaches are unable to propose an accurate model attending to the strength of the bond with the odorant-binding protein, receptor-based structures considering either static or dynamic structure of the protein perform equally to discriminate between good, medium and low affinity odorants. Such approaches will be useful for further rational des…

0303 health sciencesbiology010405 organic chemistryOdorant bindingChemistrymusculoskeletal neural and ocular physiologyRational designGeneral ChemistryComputational biologyOlfactionLigand (biochemistry)01 natural sciences0104 chemical sciences03 medical and health sciencesLow affinityBiochemistryOdorant-binding proteinbiology.proteinpsychological phenomena and processes030304 developmental biologyFood ScienceFlavour and Fragrance Journal
researchProduct

Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus

2005

International audience

METAMORPHOSISXENOPUS TROPICALISXENOPUS LAEVISOLFACTION[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC][SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]ComputingMilieux_MISCELLANEOUSODORANT-BINDING PROTEINOLFACTORY BINDING PROTEIN
researchProduct

Structure of rat odorant-binding protein OBP1 at 1.6 angstrom resolution

2009

The nasal mucosa is a specialist interfacial region sandwiched between the olfactory system and the gaseous chemical milieu. In mammals and insects, this region is rich in odorant-binding proteins that are thought to aid olfaction by assisting mass transfer of the many different organoleptic compounds that make up the olfactory landscape. However, in mammals at least, our grasp on the exact function of odorant-binding proteins is tentative and better insight into the role of these proteins is warranted, not least because of their apparent significance in the olfactory systems of insects. Here, the crystal structure of rat odorant-binding protein 1 is reported at 1.6 Å resolution. This prote…

Models MolecularOlfactory systemCristallographyProtein ConformationRecombinant Fusion ProteinsMolecular Sequence DataOlfactionOBP1Crystallography X-RayReceptors Odorant010402 general chemistry01 natural sciencesPheromonesPichia pastoris03 medical and health sciences[ CHIM.CRIS ] Chemical Sciences/CristallographyProtein structureSpecies SpecificityStructural BiologyODORANT-BINDING PROTEINS[CHIM.CRIS]Chemical Sciences/CristallographyAnimalsAmino Acid SequencePeptide sequence030304 developmental biology0303 health sciencesBinding SitesSequence Homology Amino AcidbiologyProteinsGeneral MedicineLigand (biochemistry)biology.organism_classificationLipocalinsRatsCristallographie0104 chemical sciencesTransport proteinDNA-Binding ProteinsBiochemistryOdorant-binding proteinbiology.proteinODORANT-BINDING PROTEINS;OBP1Sequence Alignment
researchProduct

Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains.

2012

Susceptibility of Tribolium castaneum (Tc) larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50) values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively). Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major cat…

Models MolecularProteomicsProteomeTranscription GeneticOdorant bindingProtein ConformationApplied Microbiologylcsh:MedicinePathogenesismedicine.disease_causeReceptors OdorantBiochemistryProtein structureBacillus thuringiensislcsh:SciencePhylogenyTriboliumMultidisciplinaryImmune System ProteinsSpectrometric Identification of ProteinsbiologyChemosensory proteinAgricultureHost-Pathogen InteractionLarvaHost-Pathogen InteractionsInsect ProteinsResearch Articleanimal structuresProtein subunitLipoproteinsBacterial ToxinsMolecular Sequence DataBacillus thuringiensisMicrobiologyBacterial ProteinsRibosomal proteinMicrobial ControlDefense ProteinsmedicineAnimalsAmino Acid SequencePesticidesBiologyToxinfungilcsh:RProteinsbiology.organism_classificationMolecular biologyApolipoproteinsOdorant-binding proteinbiology.proteinlcsh:QPest ControlSequence AlignmentZoologyEntomologyProtein AbundancePLoS ONE
researchProduct

Enthalpy/entropy compensation effects from cavity desolvation underpin broad ligand binding selectivity for rat odorant binding protein 3

2014

Evolution has produced proteins with exquisite ligand binding specificity, and manipulating this effect has been the basis for much of modern rational drug design. However, there are general classes of proteins with broader ligand selectivity linked to function, the origin of which is poorly understood. The odorant binding proteins (OBPs) sequester volatile molecules for transportation to the olfactory receptors. Rat OBP3, which we characterize by X-ray crystallography and NMR, binds a homologous series of aliphatic gamma-lactones within its aromatic-rich hydrophobic pocket with remarkably little variation in affinity but extensive enthalpy/entropy compensation effects. We show that the bin…

Models Molecular[SDV.BIO]Life Sciences [q-bio]/BiotechnologyOdorant bindingolfactory receptor[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEnthalpywaterDrug designCrystallography X-RayLigandsReceptors Odorantentropy compensationBiochemistryHydrophobic effectLactonesdifferent chemical classessiteAnimalsMoleculeNuclear Magnetic Resonance Biomolecularisotopically enriched proteinsbiologyChemistrycarbonic-anhydrase[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyLigand (biochemistry)RatsCrystallographyEnthalpy–entropy compensationSolventsOdorant-binding proteinbiology.proteinBiophysicsThermodynamicsidentificationrecognitionsolvent reorganization[SDV.AEN]Life Sciences [q-bio]/Food and NutritionProtein Binding
researchProduct

Identification of a lysyl residue defining the binding specificity of a human odorant-binding protein

2008

International audience

OBP[CHIM.OTHE] Chemical Sciences/OtherLYSYL RESIDUEBINDING SPECIFICITY[CHIM.OTHE]Chemical Sciences/OtherComputingMilieux_MISCELLANEOUSODORANT-BINDING PROTEIN
researchProduct

When the nose must remain responsive: glutathione conjugation of the mammary pheromone in the newborn rabbit

2014

In insects, xenobiotic-metabolizing enzymes were demonstrated to regulate pheromones inactivation, clearing them from the olfactory periphery and keeping receptors ready for stimulation renewal. Here, we investigate whether similar processes could occur in mammals, focusing on the pheromonal communication between female rabbits and their newborns. Lactating rabbits emit in their milk a volatile aldehyde, 2-methylbut-2-enal, that elicits searching-grasping in neonates; called the mammary pheromone (MP), it is critical for pups which are constrained to find nipples within the 5 min of daily nursing. For newborns, it is thus essential to remain sensitive to this odorant during the whole nursin…

Vomeronasal organPhysiologyIngénierie des alimentsStimulationPheromonesBehavioral Neurosciencechemistry.chemical_compoundnursingnewbornODORANT-BINDING PROTEINS[SDV.IDA]Life Sciences [q-bio]/Food engineeringDinitrochlorobenzenerabbit (Oryctolagus cuniculus)EXPRESSION PATTERNSAcroleinReceptorGlutathione TransferaseGENE-EXPRESSIONglutathione transferases[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringperireceptor eventsLOCALIZATIONmammary pheromoneGlutathioneSensory SystemsSmellmedicine.anatomical_structureOrgan SpecificitySex pheromonePheromoneFemaleRabbitsENZYMESolfactionmedicine.medical_specialtyOlfactionBiologyNoseGene Expression Regulation EnzymologicPhysiology (medical)Internal medicinemedicineFood engineeringAnimalsLactationAldehydesALDEHYDEGlutathioneFeeding BehaviorUDP-GLUCURONOSYLTRANSFERASEglutathione transferases;mammary pheromone;newborn;nursing;olfaction;perireceptor events;rabbit (Oryctolagus cuniculus);xenobiotic-metabolizing enzymes;RAT OLFACTORY EPITHELIUM;ODORANT-BINDING PROTEINS;S-TRANSFERASE;UDP-GLUCURONOSYLTRANSFERASE;EXPRESSION PATTERNS;VOMERONASAL ORGAN;GENE-EXPRESSION;LOCALIZATION;ALDEHYDE;ENZYMESxenobiotic-metabolizing enzymesRAT OLFACTORY EPITHELIUMS-TRANSFERASENasal MucosaEndocrinologychemistryAnimals NewbornOlfactory epitheliumVOMERONASAL ORGAN
researchProduct

A new odorant-binding protein XlaeOBP identified in the aerial olfactory system of Xenopus laevis and Xenopus tropicalis

2004

National audience

XENOPUS TROPICALIS[CHIM.OTHE] Chemical Sciences/OtherXENOPUS LAEVISAERIAL OLFACTORY SYSTEM[CHIM.OTHE]Chemical Sciences/OtherComputingMilieux_MISCELLANEOUSODORANT-BINDING PROTEIN
researchProduct